Douglas-Rachford splitting for nonconvex feasibility problems
نویسندگان
چکیده
We adapt the Douglas-Rachford (DR) splitting method to solve nonconvex feasibility problems by studying this method for a class of nonconvex optimization problem. While the convergence properties of the method for convex problems have been well studied, far less is known in the nonconvex setting. In this paper, for the direct adaptation of the method to minimize the sum of a proper closed function g and a smooth function f with a Lipschitz continuous gradient, we show that if the step-size parameter is smaller than a computable threshold and the sequence generated has a cluster point, then it gives a stationary point of the optimization problem. Convergence of the whole sequence and a local convergence rate are also established under the additional assumption that f and g are semi-algebraic. We also give simple sufficient conditions guaranteeing the boundedness of the sequence generated. We then apply our nonconvex DR splitting method to finding a point in the intersection of a closed convex set C and a general closed set D by minimizing the square distance to C subject to D. We show that if either set is bounded and the step-size parameter is smaller than a computable threshold, then the sequence generated from the DR splitting method is actually bounded. Consequently, the sequence generated will have cluster points that are stationary for an optimization problem, and the whole sequence is convergent under an additional assumption that C and D are semi-algebraic. We achieve these results based on a new merit function constructed particularly for the DR splitting method. Our preliminary numerical results indicate that the DR splitting method usually outperforms the alternating projection method in finding a sparse solution of a linear system, in terms of both the solution quality and the number of iterations taken.
منابع مشابه
Peaceman-Rachford splitting for a class of nonconvex optimization problems
We study the applicability of the Peaceman-Rachford (PR) splitting method for solving nonconvex optimization problems. When applied to minimizing the sum of a strongly convex Lipschitz differentiable function and a proper closed function, we show that if the strongly convex function has a large enough strong convexity modulus and the step-size parameter is chosen below a threshold that is compu...
متن کاملGlobal behavior of the Douglas-Rachford method for a nonconvex feasibility problem
In recent times the Douglas–Rachford algorithm has been observed empirically to solve a variety of nonconvex feasibility problems including those of a combinatorial nature. For many of these problems current theory is not sufficient to explain this observed success and is mainly concerned with questions of local convergence. In this paper we analyze global behavior of the method for finding a p...
متن کاملA New Use of Douglas-Rachford Splitting and ADMM for Identifying Infeasible, Unbounded, and Pathological Conic Programs
In this paper, we present a method for identifying infeasible, unbounded, and pathological conic programs based on Douglas-Rachford splitting, or equivalently ADMM. When an optimization program is infeasible, unbounded, or pathological, the iterates of Douglas-Rachford splitting diverge. Somewhat surprisingly, such divergent iterates still provide useful information, which our method uses for i...
متن کاملNonconvex Notions of Regularity and Convergence of Fundamental Algorithms for Feasibility Problems
We consider projection algorithms for solving (nonconvex) feasibility problems in Euclidean spaces. Of special interest are the Method of Alternating Projections (MAP) and the Douglas-Rachford or Averaged Alternating Reflection Algorithm (AAR). In the case of convex feasibility, firm nonexpansiveness of projection mappings is a global property that yields global convergence of MAP and for consi...
متن کاملThe rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle
The Douglas–Rachford splitting algorithm is a classical optimization method that has found many applications. When specialized to two normal cone operators, it yields an algorithm for finding a point in the intersection of two convex sets. This method for solving feasibility problems has attracted a lot of attention due to its good performance even in nonconvex settings. In this paper, we consi...
متن کامل